

Weighted sound reduction index R_w Spectrum adaptation terms C and Ctr

Evidence of Performance

Airborne sound insulation of building components

 $R_{\rm w}(C; C_{\rm tr}) = 39$ (-1;-6) dB

ift Rosenheim 07.11.2014

Dr. Joachim Hessinger, Dipl.-Phys. Head of Testing Department **Building Acoustics**

Bernd Saß, Dipl.-Ing. (FH) **Operating Testing Officer** Building Acoustics

Applicable for Germany.

16

6

ĽSď

R_w corresponds to R_{w,P} for DIN 4109, Annex 1, Table 40

Validity

The data and results given relate solely to the tested and described specimen.

Testing the sound insulation does not allow any statement to be made on further characteristics of the present construction regarding performance and quality.

Notes on publication

The ift-Guidance Sheet "Conditions and Guidance for the Use of ift Test Documents" applies. The cover sheet can be used as abstract.

Contents

The test report contains a total of 7 pages:

- 1 Object
- 2 Procedure
- 3 Detailed results 4 Instructions for use
- Data sheet (1 page)

ift Rosenheim GmbH

Geschäftsführer: Dr. Jochen Peichl Prof. Ulrich Sieberath Theodor-Gietl-Str. 7 - 9 D-83026 Rosenheim

Tel.: +49 (0)8031/261-0 Fax: +49 (0)8031/261-290 www.ift-rosenheim.de

Sitz: 83026 Rosenheim AG Traunstein, HRB 14763

Sparkasse Rosenheim IBAN: DE9071150000000003822 SWIFT-BIC: BYLADEM1ROS

Anerkannte Stelle Notified Body 0757

PÜZ-Stelle: BAY 18

-/-Special features

Page 2 of 7

1 Object

1.1 Description of test specimen (All dimensions in mm)

• •	
Component	Insulating glass unit
Product designation	SGG Climaplus Safe
External dimensions (W x H)	1,230 mm × 1,480 mm
Visible size (W x H)	1,200 mm × 1,450 mm
Total thickness	
On the edge	28.5 mm
In the middle of pane	28.0 mm
Area related mass kg/m ²	29.9 kg/m²
Construction	6 LSG/16/6 LSG
Configuration of laminated glass	3 mm Float, 0.76 mm PVB-film, 3 mm Float
	3 mm Float, 0.76 mm PVB-film, 3 mm Float
Type, manufacturer of interlayer	SGG Stadip 33.1 (manufacturer specifications)
	SGG Stadip 33.1 (manufacturer specifications)
Pane temperature in °C	23°C
Spacer	
Material	Aluminium
Manufacturer	ALU-PRO
Edge seals	Two planes, total width 11-12 mm
External type	Poliver
Manufacturer	Fenzi
Internal type	PIB
Manufacturer	Fenzi
Edge cover	Edge cover 5-6 mm
Gas filling in cavity	According to analysis at ift
Type of gas	Argon
Volume in %	94%

The description is based on inspection of the test specimen at **ift** Laboratory for Building Acoustics. Item designations / numbers as well as material specifications were provided by the client.

1.2 Mounting in test rig

Test rig	Window test rig with suppressed flanking transmission acc. to EN ISO 10140-5: 2010; the test rig includes a 5 cm continuous acoustic break which is sealed in the test opening with closed-cell permanently resilient sealant.
Mounting of test specimen	Test specimen mounted by ift Laboratory for Building Acoustics

Page 3 of 7

Mounting conditions	The unit was fitted at a distance of 5 mm into a wooden frame of 25 mm x 25 mm cross section. The cavity between test rig and glazing beads was completely filled with plastic sealant type Perennator 2001 S grey.
Mounting position	According to EN ISO 10140-1:2010+A1:2012 Annex D
Preparation	Storage of the glazing one day before testing in the test rig for conditioning.

2 Procedure

2.1 Sampling	
Sampling Quantity Manufacturer	The test specimen were selected by the client 1 Saint-Gobain Polska Sp z o.o. Oddzial GLASSOLUTIONS in Jaroszowiec
	UI. Szklanych Domow 1 42-530 Dabrowa Gornicza
Manufacturing plant , Site of manufacturing Date of manufacture / date of sampling	UI. Kolejowa 1 32-312 Jaroszowiec 15 th to 30 th September 2014, Position 16
Responsible for sampling Delivery at ift ift Registration Number	Mrs. Anna Pustul 13 th October 2014 by the client via forwarding agency 37966/14

2.2 Process

Basis

Duolo	
EN ISO 10140-1:2010 + A	1: 2012 Acoustics; Laboratory measurement of sound insulation
	of building elements - Part 1: Application rules for specific prod-
	ucts (ISO 10140-1:2010+Amd.1:2012)
EN ISO 10140-2:2010	Acoustics; Laboratory measurement of sound insulation of
	building elements - Part 2: Measurement of airborne sound in-
	sulation (ISO 10140-2:2010)
EN ISO 717-1: 2013	Acoustics; Rating of sound insulation in buildings and of build-
	ing elements - Part 1: Airborne sound insulation
Corresponds to the national	German standard:
•	

DIN EN ISO 10140-1:2012-05, DIN EN ISO 10140-2:2010-12 and DIN EN ISO 717-1 : 2013-06

Procedure and scope of measurement are in conformity with the principles of the working group of sound insulation testing bodies approved by the national building supervisory authorities in cooperation with the standardization committee NA 005-55-75-AA (subcommittee UA 1 - DIN 4109).

Boundary conditions	As required in the standard.		
Deviation	There are no deviations from the test procedure and/or test conditions.		
Test noise	Pink noise		
Measuring filter	One-third-octave band filter		
Measurement limits			
Low frequencies	The dimensions of the receiving room full fills the recommended size for testing in the frequency range from 50 Hz to 80 Hz as per EN ISO 10140-4:2010 Annex A (informative). A moving loudspeaker was used.		
Background noise level	The background noise level in the receiving room was determined during measurement and the receiving room level L_2 corrected by calculation as per EN ISO 10140-4: 2010 Clause 4.3.		
Maximum sound insulation	The maximum sound insulation of the test set-up was at least 15 dB higher than the measured sound reduction index of the test specimen. Not corrected by calculation.		
Measurement of			
reverberation time	Arithmetical mean: two measurements each of 2 loudspeaker and 3 microphone positions (a total of 12 independent meas- urements).		
Measurement equation A	$A = 0.16 \cdot \frac{V}{T} m^2$		

Measurement of sound level

difference

Minimum of 2 loudspeaker positions and rotating microphones.

Measurement equation R

$$= L_1 - L_2 + 10 \cdot \lg \frac{S}{A} \text{ in dB}$$

KEY

- A Equivalent absorption area in m²
- L₁ Sound pressure level source room in dB

R

- L₂ Sound pressure level receiving room in dB
- R Sound reduction index in dB
- TReverberation time in sVVolume of receiving room in m³
- S Testing area of the specimen in m²

Page 5 of 7

2.3 Test equipment

Device	Туре	Manufacturer
Integrating sound meter	Type Nortronic 840	Norsonic-Tippkemper
Microphone preamplifiers	Туре 1201	Norsonic-Tippkemper
Microphone unit	Туре 1220	Norsonic-Tippkemper
Calibrator	Type 1251	Norsonic-Tippkemper
Dodecahedron loudspeakers	Type 229, 96 Ohm	Norsonic-Tippkemper
Amplifier	Type 235, 100 W	Norsonic-Tippkemper
Rotating microphone boom	Type 231-N-360	Norsonic-Tippkemper

The **ift** Laboratory for Building Acoustics participates in comparative measurements at the Physikalisch-Technische Bundesanstalt (PTB) in Braunschweig every three years, the last one was in April 2013. The sound level meter used, Series No. 17848, was calibrated by the Dortmund Eichamt (calibration agency) on 19 January 2012. The calibration is valid until 31 December 2014. The sound level meter used was DKD calibrated by the company Norsonic Tippkemper (DKD - Deutscher Kalibrierdienst "German Calibration_Service") on 25 March 2013.

2.4 Testing

Date15th of October 2014Operating Testing OfficerMr. Bernd Saß

3 Detailed results

The values of the measured sound reduction index of the tested insulating glass unit are plotted as a function of frequency in the annexed data sheet and tabled.

As per EN ISO 717-1 the weighted sound reduction index R_w and the spectrum adaptation terms C and C_{tr} for the frequency range 100 Hz to 3150 Hz obtained by calculation are as follows:

$R_w(C; C_{tr}) = 39 (-1;-6) dB$

According to EN ISO 717-1 the following additional spectrum adaptation terms are obtained

C _{50-3,150} =	-1 dB	C _{100-5,000} =	0 dB	C _{50-5,000} =	0 dB
$C_{tr,50-3,150} =$	-6 dB	$C_{tr,100-5,000} =$	-6 dB	$C_{tr,50-5,000} =$	-6 dB

Page 6 of 7

4 Instructions for use

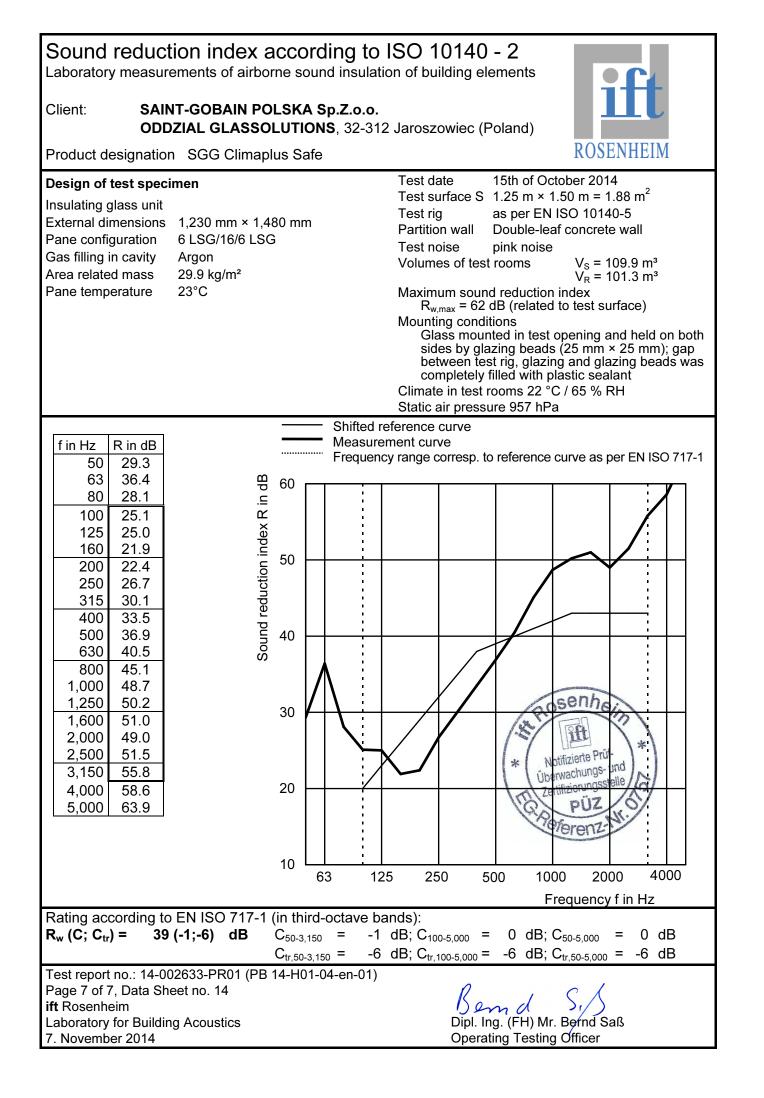
4.1 Test value

Basis

DIN 4109:1989-11 Sound insulation in buildings, requirements and verifications DIN 4109 Bbl1/A1:2003-09 Sound insulation in buildings, examples and calculation methods correction A1

For verification of sound insulation according to DIN 4109, Annex 1 : A1:2003-09, Table 40 the weighted sound reduction index R_w corresponds to the test value $R_{w,P, GLASS}$

 $R_{w,P, GLASS} = 39 \text{ dB}$


4.2 Laminated glass

The sound reduction of laminated glass depends on the temperature of the environment. If the temperature is lower than the test temperature the sound reduction index may be reduced.

4.3 Test standards

The standard series EN ISO 10140:2010 supersedes those parts of the standard series EN ISO 140 that were applicable until the respective date and describe laboratory tests. According to the two standard series, the test methods are identical.

ift Rosenheim Laboratory for Building Acoustics 07.11.2014

